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Abstract. We study the low-temperature phase of the three-dimensional ±J Ising spin glass in Migdal-
Kadanoff approximation. At zero temperature, T = 0, the properties of the spin glass result from the
ground-state degeneracy and can be elucidated using scaling arguments based on entropy. The approach
to the asymptotic scaling regime is very slow, and the correct exponents are only visible beyond system
sizes around 64. At T > 0, a crossover from the zero-temperature behaviour to the behaviour expected
from the droplet picture occurs at length scales proportional to T−2/ds where ds is the fractal dimension
of a domain wall. Canonical droplet behaviour is not visible at any temperature for systems whose linear
dimension is smaller than 16 lattice spacings, because the data are either affected by the zero-temperature
behaviour or the critical point behaviour.

PACS. 75.10.Nr Spin-glass and other random models

1 Introduction

There is still no agreement about the nature of the low-
temperature phase of the Ising spin glass, which is defined
by the Hamiltonian

H = −
∑
〈i,j〉

JijSiSj .

The spins can take the values ±1, and the nearest-
neighbour couplings Jij are independent from each other
and are most often chosen to be Gaussian distributed with
mean zero and a standard deviation J .

While many Monte-Carlo simulations show properties
conforming to the replica-symmetry-breaking (RSB) sce-
nario (implying many low-temperature states and a lack of
self-averaging) [1,2], other simulations [3] and analytical
arguments [4] favour the droplet picture (a scaling the-
ory based on the existence of only one low-temperature
state and its time reverse). The ambiguities stem from
the difficulty in reaching the asymptotic limit of low tem-
peratures and large system sizes. Monte-Carlo results are
likely to be affected by finite-size and critical-point effects.
We have recently shown that a system that is known to
conform to the droplet picture at sufficiently large system
sizes has features similar to those of RSB if only small
systems are studied and if the temperature is not low
enough [5,6]. This system is the hierarchical lattice, or,
equivalently, the Migdal-Kadanoff approximation (MKA)
applied to a cubic or hypercubic lattice. It is thus possible
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that the Ising spin glass on three- or four-dimensional lat-
tices might show its true low-temperature properties only
beyond the length scales accessible to present-day Monte-
Carlo simulations.

Exact evaluation of ground states and low-lying ex-
cited states appears to indicate a scenario that agrees
neither with the droplet picture nor with the RSB the-
ory, but shows instead low-lying excitations which have a
fractal surface [7,8]. Newman and Stein have argued [9]
that such excitations cannot give rise to new thermody-
namic states. As the studied system sizes are very small,
the phenomenon might be a small-size effect that vanishes
at larger system sizes. Since all excitations on hierarchical
lattices are combinations of compact droplets with surface
dimension d−1 and domain walls, the MKA cannot show
these low-lying excitations, and agrees with the droplet
picture even for small system sizes at low temperatures
with a Gaussian distribution for the bonds Jij .

Very recently several papers have focussed on the ±J
Ising spin glass, where the nearest-neighbour couplings
take only the values 1 and−1, instead of being chosen from
a Gaussian distribution [10–13]. Evidence is accumulating
that the ground-state degeneracy introduces new effects.
Thus, Krzakala and Martin [10] argued that even if a sys-
tem showed RSB at low temperatures, different valleys
in the energy landscape would differ in entropy to the ex-
tent that for sufficiently large system sizes one state would
dominate the zero-temperature partition function, leading
for instance to a trivial overlap distribution (i.e. an over-
lap distribution that is the sum of two δ-functions at op-
posite values of the overlap). This argument is supported
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Fig. 1. Construction of a hierarchical lattice.

by simulations by Palassini and Young [11] who find a
crossover from a zero-temperature behaviour with a triv-
ial overlap distribution to a finite-temperature behaviour
which seems to agree with the RSB scenario. In contrast,
Hed, Hartmann and Domany, claim to find a non-trivial
overlap distribution even at zero temperature [13].

It is the purpose of this paper to study the low tem-
perature properties of the ±J model in MKA in order to
shed some light on the results of Monte-Carlo simulations,
and to determine the conditions under which the true
low-temperature behaviour should be visible. Our find-
ings confirm the conjecture by Krzakala and Martin that
the zero-temperature behaviour is different from the low-
temperature behaviour, and they also confirm the scaling
assumptions concerning the entropy differences used in
their argument. Furthermore, our results show that the
true asymptotic zero-temperature behaviour and the true
low-temperature behaviour can be seen only beyond the
length scales currently studied with Monte-Carlo simula-
tions.

The outline of this paper is as follows: In Section 2 we
present our numerical results for the overlap distribution,
the Binder parameter, and the recursion of the couplings
within MKA. In Section 3, we give scaling arguments
that yield the asymptotic exponents and the crossover be-
haviour seen in the simulations. Section 4 summarizes and
discusses the results.

2 Numerical results

The Migdal-Kadanoff approximation is a real-space
renormalization group that gives approximate recursion
relations for the various coupling constants. Evaluating
a thermodynamic quantity in MKA in d dimensions is
equivalent to evaluating it on an hierarchical lattice that
is constructed iteratively by replacing each bond by 2d
bonds, as indicated in Figure 1. The total number of bonds
after I iterations is 2dI . I = 1, the smallest non-trivial sys-
tem that can be studied, corresponds to a system of linear
dimension L = 2, I = 2 corresponds to L = 4, I = 3 cor-
responds to L = 8 and so on. Note that the number of
bonds on a hierarchical lattice after I iterations is the
same as the number of sites of a d-dimensional lattice of
size L = 2I . Thermodynamic quantities are then evalu-
ated iteratively by tracing over the spins on the highest
level of the hierarchy, until the lowest level is reached and
the trace over the remaining two spins is calculated [14].
This procedure generates new effective couplings, which
have to be included in the recursion relations. The recur-
sion relation of the width J(L) of the two-spin coupling is
for sufficiently many iterations and sufficiently low tem-
perature given by J(L) ∝ Lθ, with θ ' 0.26 in MKA in
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Fig. 2. The overlap distribution for the ±J spin glass in MKA
for L = 16 and T = 1, 0.769, 0.625, 0.476, 0.33, 0.2 (left) and
for T = 0.33 and L = 4, 8, 16, 32 (right), all averaged over
several thousand samples.

three dimensions (which is the only dimension studied in
this paper).

We first evaluated the overlap distribution

P (q, L) =

〈δ
∑
〈ij〉

S
(1)
i S

(2)
i + S

(1)
j S

(2)
j

2NL
− q

〉 , (1)

between two identical replicas of the system, where the
superscripts (1) and (2) denote the two replicas of the
system, NL is the number of bonds of a system of size L,
and 〈...〉 and [...] denote the thermodynamic and disorder
average respectively. As discussed in [5], the calculation
of P (q, L) is made easier by first calculating its Fourier
transform F (y, L), which is given by

F (y, L) =

〈exp

iy
∑
〈ij〉

(S(1)
i S

(2)
i + S

(1)
j S

(2)
j )

2NL

〉 .
(2)

The recursion relations for F (y, L) involve two- and four-
spin terms, and can easily be evaluated numerically be-
cause all terms are now in an exponential. Having calcu-
lated F (y, L), one can then invert the Fourier transform
to get P (q, L). Figure 2 shows our results for L = 16 at
different temperatures, and for T = 0.33 at different sys-
tem sizes respectively. Due to the ground state degeneracy,
the overlap distribution for fixed L does not change below
a temperature for which most samples are in the ground
state. With increasing system size, the peaks in the over-
lap distribution become sharper, and the probability of
finding an overlap value near zero decreases, indicating
that one state and its spin-flipped counterpart dominate
the statistics.

Figure 3 shows the probability density P (q = 0, L)
that the two replicas have zero overlap, at several dif-
ferent temperatures. The two curves for T = 0.33 and
T = 0.2 are on top of each other, indicating that at these
sizes and temperatures, the system is in the ground state
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Fig. 3. The probability density P (q = 0, L) for the ±J spin
glass in MKA for T = 1, 0.769, 0.625, 0.476, 0.33, and 0.2 (from
top to bottom). The critical temperature is Tc = 1.14. The bars
indicate the standard deviation of the mean. The dotted line
has the droplet picture slope −θ = −0.26, which must be for
sufficiently large L the asymptotic slope of all shown curves.
The dashed line has the slope −1.26, which is the asymptotic
slope expected for sufficiently large L at T = 0.

with a probability close to 1. The T = 0.476 curve co-
incides for L < 16 with the T = 0 curve, but branches
off for larger L and approaches the slope −0.26 ex-
pected from the droplet picture and seen in a system with
Gaussian distributed couplings (see [5]). The T = 0.625
curve seems to be affected by ground state effects for
L ≤ 16, as it starts out close to the T = 0 curve and then
has a negative slope which becomes flatter for larger L.
A slope flatter than that predicted by the droplet picture
indicates an influence of the critical point, as discussed
in [5]. For even larger L, the curve must become steeper
again and approach the slope of the droplet picture. Even
the T = 0.769 curve appears to be affected by the ground
state degeneracy for L ≤ 8.

From these numerical results, the asymptotic be-
haviour of the T = 0 curve cannot be predicted. It seems
unlikely that it becomes flatter for larger L, implying
that it is fundamentally different from the droplet pic-
ture, which should govern the behaviour of a sufficiently
large system at low temperatures. The asymptotic slope
of the T = 0 curve and the crossover length scale at which
a finite-temperature curve branches off from it will be de-
rived further below. Our results also show that for system
sizes smaller than around 16, all curves are affected either
by the critical behaviour, or by the ground state degener-
acy, so that the droplet behaviour (indicated by the dotted
line in Fig. 3) is not visible for any temperature.

In order to be able to study larger system sizes, we
determined the Binder parameter

B =
3
2

(
1− [〈q4〉]

3[〈q2〉]2
)
, (3)

which can be obtained by differentiating equation (2) with
respect to y. This is done by evaluating F (y, L) for three
small values of y. The systematic error resulting from the
finiteness of y is found by evaluating F (y) for a few sam-
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Fig. 4. The Binder parameter B as function of system size for
the ±J spin glass in MKA for T = 0.33, 0.2 and 0 (from top
to bottom). The dotted line has a slope −0.26, the dashed line
has the slope −1.26. All data points are averaged over 50 000
samples.

ples for many values of y, and by extrapolating to y → 0.
The Binder parameter B = 0 in the high-temperature
phase, and approaches 1 in the low-temperature phase if
the overlap distribution is trivial. Within the droplet pic-
ture, 1−B must scale as L−θ for sufficiently large L. Fig-
ure 4 shows our results. As for the overlap distribution,
the T = 0 curve is much steeper than the limit slope ex-
pected from the droplet picture, and the low-temperature
curves branch off from it at a system size that is larger for
lower temperatures. In contrast to Figure 3, system sizes
can be studied that are large enough to see the differences
between the three curves for T = 0.33, 0.2 and 0. The
T = 0 simulation was done by taking the trace only over
those configurations that contribute to the ground state,
and by keeping track of the degeneracies.

Next, we tried to understand the reasons for the steep
decline of the T = 0 curve, and of its slow approach to
the asymptotic slope. For sufficiently large system sizes,
the main contribution to P (q = 0, L) at T = 0 must come
from samples where a domain wall costs no energy. A do-
main wall is introduced into the system by flipping one
of the two corner spins of the hierarchical lattice out of
the ground state orientation, and by determining the new
ground state resulting with this boundary condition. Sam-
ples where such a domain wall costs no energy have zero ef-
fective coupling strength J(L) = 0 at length scale L, with
J(L) resulting from the recursion relation for the width of
the distribution of the couplings under the renormaliza-
tion procedure. Figure 5 shows the probability of having
J(L) = 0 (or, equivalently, of having a domain wall with
zero energy cost) as function of the system size L. One can
see that the slope is identical to that expected from the
droplet picture beyond length scales L = 32, and is only
slightly steeper for smaller system sizes. This indicates
that the±J model has a crossover length around 32, which
is not present in the model with Gaussian distributed cou-
plings, where the slope agrees with the droplet picture
even for the smallest system sizes.
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Fig. 5. The probability of having a domain wall with no en-
ergy cost in the ground state as function of the system size
(* symbols). For comparison, the probability density obtained
for a Gaussian coupling distribution is also shown (+ symbols).
The dotted lines have the slope −0.26, the dashed line has the
slope −0.3.
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Fig. 6. The probability that the states of two replicas at T = 0
have a different relative orientation of their corner spins. The
asymptotic slope, given by the dashed line, has the value−1.26.

Since Figure 5 agrees with the droplet picture, it can-
not explain the steep decrease of P (q = 0, L), and B at
zero temperature. For small system sizes, not only domain
walls, but also several small droplets can create a zero
overlap, but this effect should become irrelevant for suffi-
ciently large system sizes. The only remaining possibility
is that while the probability for having a domain wall of
zero energy agrees with the droplet picture, the weights
of the two ground states with and without a domain wall
differ by a factor that increases with increasing system
size. In order to check this hypothesis, we evaluated the
degeneracies of the two ground states that are obtained
by fixing the two corner spins in parallel and antiparallel
orientation respectively, and derived from this the proba-
bility that two identical replicas of the system are in the
two different states. The result is shown in Figure 6. The
curve is steeper by −1 compared to that of the droplet pic-
ture, indicating that entropy differences between ground
states are the crucial factor causing the deviation of the
T = 0 results from the droplet picture.

Figure 6 shows the same slow approach towards
asymptopia as Figures 3 and 4. We will attempt an expla-

nation in the next section which is devoted to a theoretical
explanation of the numerical findings.

3 Scaling arguments

The main objective of the scaling theory presented here is
to derive the asymptotic slope of the T = 0 curves, and
to predict the crossover length scale at which curves at
finite T branch off from the T = 0 curve. As shown by our
numerical data presented in the previous section, entropy
differences between ground state configurations that dif-
fer by a domain wall play a crucial role. Let us therefore
consider a system that has a ground state for which a do-
main wall costs no energy, and let us estimate the order
of magnitude of the entropy difference between the two
ground states. One of the ground states is obtained by
fixing the two corner spins of the system (those with the
highest coordination number) in parallel orientation, and
the other is obtained by making them antiparallel. Contri-
butions to the entropy of each of these two states are made
by droplet excitations that cost no energy. (A droplet is a
block of spins that are connected to each other and that
does not include one of the two corner spins, and it may
comprise just a single spin). By flipping several droplets,
one can thus get from every configuration contributing to
one of the two ground states (with fixed corner spins) to
every other configuration contributing to this state. The
argument made in the following is similar to the one made
by Krzakala and Martin [10] for a system with supposed
RSB in the low-temperature phase. To each configuration
contributing to the first ground state (with parallel cor-
ner spins), there exist configurations in the second ground
state (with antiparallel corner spins) that differ from it
only by a domain wall. This means that the two configu-
rations can be transformed into each other by flipping a
coherent block of spins including the right corner spin (as-
suming that the left corner spin is up in both states). Now,
all the possible zero-energy droplets in the first configu-
ration that do not touch the domain wall, are also zero-
energy droplets in the second configuration. Droplets that
do not touch domain walls can therefore make no contri-
bution to the entropy difference between the two ground
states, because they occur in both of them. The entropy
difference between the two states results therefore from
those droplets that touch the domain wall. Now, the do-
main wall involves ∝ Lds bonds, where ds is the fractal di-
mension of the domain wall, and has the value ds = d−1 in
MKA. (This is because [2d−1]I = Ld−1 bonds must be cut
in order to divide the system into two unconnected parts.)
The average number of droplets touching the domain wall
can therefore be expected to be ∝ Lds (assuming that the
majority of droplets are small and independent from each
other), and the typical fluctuation (measured over differ-
ent samples, or over the two ground states) in the number
of droplets touching a domain wall can be expected to be
∝ Lds/2, which is identical to L in MKA in three dimen-
sions.

Now, the probability that two replicas have zero over-
lap is proportional to the probability that a domain wall



B. Drossel and M.A. Moore: The ±J spin glass in Migdal-Kadanoff approximation 593

costs no energy, ∝ L−θ, multiplied by the probability
that the configurations of the two replicas have a dif-
ferent relative orientation of the corner spins, ∝ L−ds/2.
This explains the asymptotic slope of −θ − ds/2 ' −1.26
seen in Figure 6, and expected for the zero-temperature
P (q = 0, L) curve in Figure 3. This scaling relation for
the asymptotic slope within the droplet picture was also
given in [11]. For the Binder parameter, Figure 4, we ex-
pect the same asymptotic behaviour, 1 − B ∼ L−θ−ds/2.
The reason is that for large system sizes mainly samples
with zero-energy domain wall excitations show a consid-
erable difference between 〈q4〉 and 〈q2〉2.

Next, let us discuss possible reasons why the asymp-
totic slope −θ − ds/2 is approached so slowly in all our
plots. Our scaling argument is based on the assumption
that the size distribution of the droplets that touch the
domain wall does not change much with the system size.
For small system sizes, the droplet size distribution might
be far from the asymptotic droplet size distribution, possi-
bly causing considerable deviations from asymptopia. This
effect is probably more severe in MKA than on a three-
dimensional lattice, because in MKA droplets consisting
of a single spin with coordination number two make no
contribution to the entropy difference between the two
ground states. The reason is that flipping the domain wall
transforms each spin next to the domain wall with coordi-
nation number 2 that can be flipped without energy cost
(and which therefore makes a contribution to the entropy)
into a spin that can be flipped only by paying the energy
4, while every spin with coordination number two along
the domain wall that can be flipped only by paying energy,
is transformed into a spin that can be flipped without en-
ergy cost. When the domain wall is flipped, the energy of
spins in the first class changes by −2, and that of the spins
in the second class by +2. Since the domain wall costs no
energy, the numbers of the two classes of spins must be
equal, and the entropy contribution due to spins with co-
ordination number two that can be flipped without energy
cost is the same for both ground states.

Furthermore, we have assumed that the fluctuation in
the numbers of droplets touching the domain wall is given
by the central limit theorem, which is a good approxi-
mation only for sufficiently large system sizes. Deviations
from the numbers predicted by the central limit theo-
rem may be a further reason why the asymptotic slope
−θ − ds/2 is only visible for large system sizes.

Third, we have assumed that domain walls make the
main contribution to P (q = 0, L). This assumption is not
correct for small system sizes, where droplet excitations
that do not involve the corner spin may also add up to an
overlap value of zero.

Finally, let us determine the crossover length scale be-
yond which the droplet picture should become visible for
small nonzero temperatures: Within the droplet picture,
we have P (q = 0, L) ∼ TL−θ, while we have at zero tem-
perature P (q = 0, L) ∼ L−θ−ds/2. A crossover between
the two regimes occurs when the two quantities are equal,
i.e., when L ∼ T−2/ds .

4 Conclusions

In this paper, we have studied the ±J Ising spin glass
within MKA. We have found that the zero-temperature
behaviour is fundamentally different from that at low
temperatures, due to entropy differences between ground
states. Only for length scales larger than of the order
T−2/ds does the expected droplet-picture behaviour be-
come visible. We have presented a scaling theory that
predicts the asymptotic scaling exponent −θ − ds/2 for
the overlap distribution at zero temperature, and we have
shown from numerical results as well as from analytical
arguments that the approach to this asymptotic scaling
might be slow.

Our findings shed some light on recent Monte-Carlo
simulations of the three-dimensional ±J Ising spin glass.
While the scaling arguments by Krzakala and Martin [10]
predict a decrease of P (q = 0, L) at zero temperature at
least with an exponent −ds/2 (if one assumes with them
that the system shows RSB, implying θ = 0), which lies
somewhere between −1.1 and −1.3, the best Monte-Carlo
simulations find only a value around −0.9 [11,15]. Other
Monte-Carlo simulations giving a considerably smaller ex-
ponent probably do not sample the ground state config-
urations with the appropriate weights (see the comment
by Marinari et al. [16] on the simulations by Hatano and
Gubernatis [17], and the remarks by Palassini and
Young [11] on the simulations by Hartmann [18].) Our
findings of a surprisingly slow approach to the correct
asymptotic scaling can reconcile the Monte-Carlo results
with the predictions by Krzakala and Martin, and also
with our predictions based on the droplet picture (where
the asymptotic exponent is around −1.4 or −1.5), which
we believe to be the correct description of the spin-glass
phase.

Our results in Figure 3 show also that for not too low
temperatures the overlap distribution data may at first
(for the smallest L values) be affected by the ground-state
degeneracy (as indicated by a slope that is initally steeper
than for larger L), then (for somewhat larger L) by the
critical point (manifesting itself in a pretty flat slope), and
only for sufficiently large L (which may be beyond the
reach of Monte-Carlo simulations) the correct asymptotic
slope given by the droplet picture. Given such a compli-
cated behaviour, the predictions in [13] and [11] for the
asymptotic behaviour of P (q, L) based on small system
sizes and assuming simple scaling forms have no convinc-
ing basis.

We conclude that it is possible that the ±J Ising spin
glass in three dimensions and for system sizes smaller
than approximately 16 does not show the correct asymp-
totic scaling behaviour at any value of the temperature.
It remains to be seen whether the Ising spin glass with a
Gaussian bond distribution has also finite-size effects
which make it impossible to see even at low temperatures
the correct asymptotic scaling behaviour for the system
sizes presently used in computer simulations.

BD acknowledges support from the Deutsche Forschungsge-
meinschaft, grant number Dr300/2-1.
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